1,286 research outputs found

    A Quantitative Sensory Testing Approach to Pain in Autism Spectrum Disorders.

    Get PDF
    Sensory abnormalities in autism has been noted clinically, with pain insensitivity as a specified diagnostic criterion. However, there is limited research using psychophysically robust techniques. Thirteen adults with ASD and 13 matched controls completed an established quantitative sensory testing (QST) battery, supplemented with measures of pain tolerance and central modulation. The ASD group showed higher thresholds for light touch detection and mechanical pain. Notably, the ASD group had a greater range of extreme scores (the number of z-scores outside of the 95% CI > 2), dynamic mechanical allodynia and paradoxical heat sensation; phenomena not typically seen in neurotypical individuals. These data support the need for research examining central mechanisms for pain in ASD and greater consideration of individual difference

    Insights into anisotropy development and weakening of ice from in situ P wave velocity monitoring during laboratory creep

    Get PDF
    Polycrystalline ice weakens significantly after a few percent strain, during high homologous temperature deformation. Weakening is correlated broadly with the development of a crystallographic preferred orientation (CPO). We deformed synthetic polycrystalline ice at -5°C under uniaxial compression, while measuring ultrasonic P wave velocities along several raypaths through the sample. Changes in measured P wave velocities (V p ) and in the velocities calculated from microstructural measurements of CPO (by cryo-electron backscatter diffraction) both show that velocities along trajectories parallel and perpendicular to shortening decrease with increasing strain, while velocities on diagonal trajectories increase. Thus, in these experiments, velocity data provide a continuous measurement of CPO evolution in creeping ice. Samples reach peak stresses after 1% shortening. Weakening corresponds to the start of CPO development, as indicated by divergence of P wave velocity changes for different raypaths, and initiates at ≈3% shortening. Selective growth by strain-induced grain boundary migration (GBM) of grains favorably oriented for basal slip may initiate weakening through the formation of an interconnected network of these grains by 3% shortening. After weakening initiates, CPO continues to develop by GBM and nucleation processes. The resultant CPO has an open cone (small circle) configuration, with the cone axis parallel to shortening. The development of this CPO causes significant weakening under uniaxial compression, where the shear stresses resolved on the basal planes (Schmid factors) are high

    Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    Get PDF
    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia

    Glucocorticoid maturation of mitochondrial respiratory capacity in skeletal muscle before birth

    Get PDF
    In adults, glucocorticoids act to match the supply and demand for energy during physiological challenges, partly through actions on tissue mitochondrial oxidative phosphorylation (OXPHOS) capacity. However, little is known about the role of the natural prepartum rise in fetal glucocorticoid concentrations in preparing tissues for the increased postnatal energy demands. This study examined the effect of manipulating cortisol concentrations in fetal sheep during late gestation on mitochondrial OXPHOS capacity of two skeletal muscles with different postnatal locomotive functions. Mitochondrial content, biogenesis markers, respiratory rates and expression of proteins and genes involved in the electron transfer system (ETS) and OXPHOS efficiency were measured in the biceps femoris (BF) and superficial digital flexor (SDF) of fetuses either infused with cortisol before the prepartum rise or adrenalectomised to prevent this increment. Cortisol infusion increased mitochondrial content, biogenesis markers, substrate-specific respiration rates and abundance of ETS Complex I and adenine nucleotide translocator (ANT1) in a muscle-specific manner that was more pronounced in the SDF than BF. Adrenalectomy reduced mitochondrial content and expression of PGC1α and ANT1 in both muscles, and ETS Complex IV abundance in the SDF near term. Uncoupling protein gene expression was unaffected by cortisol manipulations in both muscles. Gene expression of the myosin heavy chain isoform, MHCIIx, was increased by cortisol infusion and reduced by adrenalectomy in the BF alone. These findings show that cortisol has a muscle-specific role in prepartum maturation of mitochondrial OXPHOS capacity with important implications for the health of neonates born pre-term or after intrauterine glucocorticoid overexposure

    A brain-computer interface with vibrotactile biofeedback for haptic information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested that Brain-Computer Interfaces (BCI) may one day be suitable for controlling a neuroprosthesis. For closed-loop operation of BCI, a tactile feedback channel that is compatible with neuroprosthetic applications is desired. Operation of an EEG-based BCI using only <it>vibrotactile feedback</it>, a commonly used method to convey haptic senses of contact and pressure, is demonstrated with a high level of accuracy.</p> <p>Methods</p> <p>A Mu-rhythm based BCI using a motor imagery paradigm was used to control the position of a virtual cursor. The cursor position was shown visually as well as transmitted haptically by modulating the intensity of a vibrotactile stimulus to the upper limb. A total of six subjects operated the BCI in a two-stage targeting task, receiving only vibrotactile biofeedback of performance. The location of the vibration was also systematically varied between the left and right arms to investigate location-dependent effects on performance.</p> <p>Results and Conclusion</p> <p>Subjects are able to control the BCI using only vibrotactile feedback with an average accuracy of 56% and as high as 72%. These accuracies are significantly higher than the 15% predicted by random chance if the subject had no voluntary control of their Mu-rhythm. The results of this study demonstrate that vibrotactile feedback is an effective biofeedback modality to operate a BCI using motor imagery. In addition, the study shows that placement of the vibrotactile stimulation on the biceps ipsilateral or contralateral to the motor imagery introduces a significant bias in the BCI accuracy. This bias is consistent with a drop in performance generated by stimulation of the contralateral limb. Users demonstrated the capability to overcome this bias with training.</p

    Vegan Cinema

    Get PDF

    Pain Processing in Psychiatric Conditions: A systematic review

    Get PDF
    Objective: Pain experience is fundamental to our environmental learning when functioning typically. Alterations in this experience is often reported to occur in individuals with certain psychiatric conditions, suggesting there may be pathological alterations in the underlying mechanisms, however there is a dearth of experimental evidence. The improvement of technology for measuring pain perceptions and these mechanisms has led to a renewed interest in this area. In order to examine the research into the pain experiences of these groups and the extent to which a-typicality is present, a systematic review was conducted. Methods: An electronic search strategy was developed and conducted in several databases. Results: The current systematic review included 47 studies covering five DSM-5 disorders: autism, attention deficit hyperactivity disorder, schizophrenia, personality disorder and eating disorders, confirming tentative evidence of altered pain and touch processing. Specifically, hyposensitivity is reported in schizophrenia, personality disorder and eating disorder, hypersensitivity in ADHD and mixed results for autism. Conclusions: Review of the research highlights a degree of methodological inconsistency in the utilisation of comprehensive protocols; the lack of which fails to allow us to understand whether atypicality is systemic or modality specific

    Development and preliminary evaluation of EMPOWER for surrogate decision-makers of critically ill patients

    Get PDF
    OBJECTIVE: The objectives of this study were to develop and refine EMPOWER (Enhancing and Mobilizing the POtential for Wellness and Resilience), a brief manualized cognitive-behavioral, acceptance-based intervention for surrogate decision-makers of critically ill patients and to evaluate its preliminary feasibility, acceptability, and promise in improving surrogates' mental health and patient outcomes. METHOD: Part 1 involved obtaining qualitative stakeholder feedback from 5 bereaved surrogates and 10 critical care and mental health clinicians. Stakeholders were provided with the manual and prompted for feedback on its content, format, and language. Feedback was organized and incorporated into the manual, which was then re-circulated until consensus. In Part 2, surrogates of critically ill patients admitted to an intensive care unit (ICU) reporting moderate anxiety or close attachment were enrolled in an open trial of EMPOWER. Surrogates completed six, 15-20 min modules, totaling 1.5-2 h. Surrogates were administered measures of peritraumatic distress, experiential avoidance, prolonged grief, distress tolerance, anxiety, and depression at pre-intervention, post-intervention, and at 1-month and 3-month follow-up assessments. RESULTS: Part 1 resulted in changes to the EMPOWER manual, including reducing jargon, improving navigability, making EMPOWER applicable for a range of illness scenarios, rearranging the modules, and adding further instructions and psychoeducation. Part 2 findings suggested that EMPOWER is feasible, with 100% of participants completing all modules. The acceptability of EMPOWER appeared strong, with high ratings of effectiveness and helpfulness (M = 8/10). Results showed immediate post-intervention improvements in anxiety (d = -0.41), peritraumatic distress (d = -0.24), and experiential avoidance (d = -0.23). At the 3-month follow-up assessments, surrogates exhibited improvements in prolonged grief symptoms (d = -0.94), depression (d = -0.23), anxiety (d = -0.29), and experiential avoidance (d = -0.30). SIGNIFICANCE OF RESULTS: Preliminary data suggest that EMPOWER is feasible, acceptable, and associated with notable improvements in psychological symptoms among surrogates. Future research should examine EMPOWER with a larger sample in a randomized controlled trial

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils
    corecore